5. Ya. S. Podstrigach and Yu. M. Kolyano, "Equations of generalized thermoelasticity for bodies with thin inclusions," Dokl. Akad. Nauk SSSR, 224, No. 4, 794-797 (1975).
6. Ya. S. Podstrigach and Yu. M. Kolyano, "Heat exchange taken into account in local heating of thin-walled structural elements," Dokl. Akad. Nauk SSSR, 225, No. 4, 778781 (1975).

CALCULATION OF TOMOGRAPHIC PROJECTIONS

V. I. Vlasov and V. P. Kurozaev

The article suggests a method of calculating tomographic projections.
The problem of interaction between x rays and the substance of the investigated object, arising in the field of computerized tomography, reduces to the calculation of tomographic projections [1]. The present article submits a method of calculating parallel and bundle tomographic projections for one class of images of the section of the object; the terminology and some of the designations are taken over from [1].

Let w and \hat{w} be the applicates of points of the plane of the object's section in the initial system x, y and in the system of coordinates \hat{x}, \hat{y} rotated through the angle θ, respectively, $\hat{w}=w e^{-i \theta} ;$ let $\mu(x, y)$ and $\mu_{\theta}(x, \hat{y})$ be the distribution of the absorption coefficient by the material of the object in the initial and in the rotated system of coordinates, respectively, $\mu_{\theta}(x, y)=\mu(x, y)$; the function $\mu(x, y)$ is called the image of the section of the object. Then for x rays passing along the straight line $\hat{x}=$ const, the logarithm of the ratio of its intensity at the entrance into the object to the intensity at the exit from the object, called the parallel tomographic projection $\rho_{\theta}(\hat{x})$ of the section, is determined by the formula

$$
\begin{equation*}
p_{\theta}(\hat{x})=\int_{-\infty}^{+\infty} \mu_{\theta}(\hat{x}, \hat{y}) d \hat{y} \tag{1}
\end{equation*}
$$

Assume that from the source lying at the point $\rho \exp \left[i\left(\beta-\frac{\pi}{2}\right)\right]$ there emerges a beam in the direction parallel to the vector $\exp \left[i\left(\frac{\pi}{2}+\beta+\gamma\right)\right]$; the logarithm of the ratio of its intensities at the entrance into and at the exit from the object is called the bundle projection $h_{\beta}(\gamma)$ of the section; it is correlated with the parallel projection by the relation [1]

$$
\begin{equation*}
h_{\beta}(\gamma)=p_{\theta(\beta, \gamma)}(\hat{x}(\beta, \gamma)) \tag{2}
\end{equation*}
$$

where the dependences $\hat{x}(\beta, \gamma), \theta(\beta, \gamma)$ have the form

$$
\begin{equation*}
\tilde{x}=-\rho \sin \gamma, \theta=\beta+\gamma \tag{3}
\end{equation*}
$$

We introduce the notation: l, n are integers, $\mathrm{n}=1,2, \ldots, \mathrm{~N} ; \ell=1,2, \ldots, \mathrm{~L}_{\mathrm{n}} ; \mathrm{g}(\mathrm{n}, l)$ is the region bounded by an ellipse with the center at the point $R(n, l) \exp [i p(n, l)]$, the semiaxis $a(n, l), b(n, l)$, the first of which is inclined to the radius vector of the center of the ellipse at the angle $\Phi(n, l)$; if for some n_{0}, l_{0} we have $\mathrm{R}\left(n_{0}, l_{0}\right)=0$, then we put $\varphi\left(n_{0}, l_{0}\right)=0 ; g(0)$ is the region bounded by an ellipse with the center at the origin of coordinates, semiaxes $a(0), b(0)$, the first of which is inclined to the x axis at the angle $\Phi(0)$.

Let us examine the class of images $\mu(x, y)$ for which the following condition is fulfilled; the section of the object is the domain $g(0) ; g(n, l) \subset g(0)$ for all n, l; the sets $G(n)$, determined by the relation

$$
\begin{equation*}
G(n)=\bigcup_{l=1}^{L_{n}} g(n, l) \tag{4}
\end{equation*}
$$

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 50, No. 1, pp. 126-128, January, 1986. Original article submitted July 19, 1983.
do not intersect pairwise;

$$
\mu(x, y)=\left\{\begin{array}{l}
k(0), w \in g(0) \backslash \bigcup_{n=1}^{N} G(n) \tag{5}\\
k(n), w \in G(n),
\end{array}\right.
$$

where $k(0)$ and $k(n)$ are specified constants.
For any image $\mu(x, y)$ from the examined class, the parallel projections are expressed by the formula

$$
\begin{equation*}
p_{\theta}(\hat{x})=k(0) p_{\theta}(0, \hat{x})-\sum_{n=1}^{N}[k(0)-k(n)] p_{\theta}(n, \hat{x}) \tag{6}
\end{equation*}
$$

the bundle projections are found from this with the aid of relations (2), (3). In formula (6) the value of $p_{\theta}(0, \hat{x})$ is determined by the equality

$$
\begin{equation*}
p_{6}(0, \hat{x})=2 \sqrt{A(0) a(0) b(0)-A^{2}(0) \hat{x}^{2}} \tag{7}
\end{equation*}
$$

where

$$
\begin{gather*}
A(0)=\frac{\sin 2 \alpha(0)}{1-\cos 2 \alpha(0) \cos 2[\Phi(0)-\theta]}, \tag{8}\\
\alpha(0)=\operatorname{arctg} \frac{a(0)}{b(0)}, \tag{9}
\end{gather*}
$$

and the values of $p_{\theta}(n, x)$ are calculated in the following manner.
Specifying the values n, \hat{x}, θ, and putting $Z=1,2, \ldots, L_{n} ; j=-1,1$, we calculate $\hat{y}(n, l, j ; \hat{x}, \theta)$ for all combinations of I, j by the formula

$$
\begin{gather*}
\hat{y}(n, l, j ; \hat{x}, \theta)=R(n, l) \sin [\varphi(n, l)-\theta]+B(n, l ; \theta) \times \\
\times C(n, l ; \hat{x} ; \theta)+(-1)^{\frac{3+j}{2}} \sqrt{A(n, l ; \theta) a(n, l) b(n, l)-A^{2}(n, l ; \theta) C^{2}(n, l ; \hat{x}, \theta)}, \tag{10}
\end{gather*}
$$

where

$$
\begin{gather*}
A(n, l ; \theta)=\frac{\sin 2 \alpha(n, l)}{1-\cos 2 \alpha(n, l) \cos 2[\varphi(n, l)+\Phi(n, l)-\theta]} \tag{11}\\
B(n, l ; \theta)=\frac{\cos 2 \alpha(n, l) \sin [\varphi(n, l)+\Phi(n, l)-\theta]}{1-\cos 2 \alpha(n, l) \cos 2[\varphi(n, l)+\Phi(n, l)-\theta]}, \tag{12}\\
C(n, l ; \hat{x}, \theta)=R(n, l) \cos [\varphi(n, l)-\theta]-\hat{x} \tag{13}\\
\alpha(n, l)=\operatorname{arctg} \frac{a(n, l)}{b(n, l)} \tag{14}
\end{gather*}
$$

We arrange the obtained set of values $\hat{y}(n, l, j ; \hat{x}, \theta)$ (see (10)) in the form of a nondecreasing sequence of s, and denote:

$$
\begin{equation*}
\hat{y}\left(n, l_{s}, j_{s} ; \hat{x}, \theta\right)=y(s), s=1,2, \ldots, S \tag{15}
\end{equation*}
$$

The subscripts s for which the equality

$$
\begin{equation*}
\sum_{k=1}^{s} j_{k}=0 \tag{16}
\end{equation*}
$$

is fulfilled are arranged in the form of an increasing sequence of $q: q=1,2, \ldots, Q$. Then the sought value of $p_{\partial}(n, \hat{x})$ is determined by the expression

$$
\begin{equation*}
p_{\theta}(n, \hat{x})=\sum_{q=1}^{Q} y\left(s_{q}\right)-\sum_{q=1}^{Q-1} y\left(s_{q}+1\right)-y(1) \tag{17}
\end{equation*}
$$

in the same way with the aid of formula (6) we find the parallel projection, and with a view to formulas (2), (3) we find the bundle projection for any image $\mu(x, y)$ from among the class under examination.

NOTATION

x, y, Cartesian coordinates; i , imaginary unit; r, φ, polar coordinates; $w=x+i y=r \exp (i \varphi)$; $\bar{\omega}=\bar{x}+i \hat{y}=w \exp (-i \theta) ; \mu(x, y)$, absorption coefficient of radiation as a function of the coordinates (image of the section of the object); β, γ, bundle coordinates; $p_{\theta}(\hat{x})$, parallel tomographic projection; $h_{\beta}(\gamma)$, bundle tomographic projection.

LITERATURE CITED

1. H. J. Scudder, "Introduction to computer aided tomography," Proc. IEEE, 66, No. 6, 628637 (1978).

SURVEYS

INTERACTIONS OF ATOMS AND CALCULATION OF TRANSPORT COEFFICIENTS IN
METAL VAPORS AND THEIR MIXTURES WITH GASES
K. M. Aref'ev and M. A. Guseva

UDC 533.15

In kinetic theory [1, 2], the transport coefficients of a gas are expressed in terms of collision integrals. In particular, in the first approximation of the theory of Chapman and Enskog, the viscosity and thermal conductivity of a dilute, single-component gas, and the coefficient of diffusion of a dilute binary mixture are given by the formula

$$
\begin{gather*}
\eta=\frac{5}{16} \frac{\sqrt{\pi m k T}}{\pi \sigma^{2} \Omega^{(2,2) *}} \tag{1}\\
\lambda=\frac{5}{2} \eta c_{v} \tag{2}
\end{gather*}
$$

(for a monatomic gas),

$$
\begin{equation*}
D_{12}=\frac{3}{16 n m_{12}} \frac{\sqrt{2 \pi m_{12} k T}}{\pi \sigma_{12}^{2} \Omega_{12}^{(1,1) *}} . \tag{3}
\end{equation*}
$$

The reduced collision integrals

$$
\Omega^{(l, s) *}=\Omega^{(l, s)}\left\{\left(\frac{k T}{\pi m_{12}}\right)^{1 / 2} \frac{(s+1)!}{2}\left[1-\frac{1+(-1)^{l}}{2(l+1)}\right] \pi \sigma_{12}^{2}\right\}^{-1}
$$

are computed with the help of relations taking into account the interaction of molecules in collisions based on the conservation laws of mass, momentum, and kinetic energy:

$$
\chi(g, b)=\pi-2 b \int_{R_{m}}^{\infty} \frac{d R / R^{2}}{\left[1-b^{2} / R^{2}-\varphi(R) /\left(m_{12} g^{2} / 2\right)\right]^{1 / 2}},
$$

M. I. Kalinin Polytechnical Institute, Leningrad. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 50, No. 1, pp. 148-162, January, 1986. Original article submitted November 16, 1984.

